Thème 3 : Santé Chapitre 14

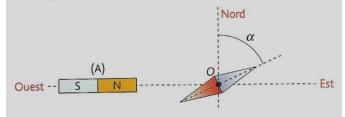
Chapitre 14 - Le magnétisme et la santé-Exercices

Exercice 1: QCM, indique la ou les bonne(s) réponse(s)

Rappel:

Dans un solénoïde, $B = \mu_0 \times n \times I$

avec n le nombre de spires par mètre

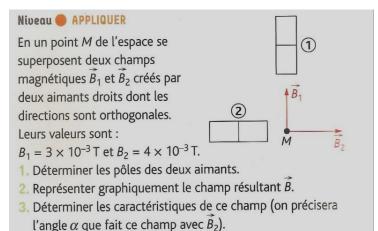

	A	В	C
1. Une aiguille aimantée	s'oriente à la surface de la Terre	possède un pôle nord et un pôle sud	est déviée si on approche un aimant
2. Un champ magnétique peut être créé par	un aimant permanent	un barreau de fer	un fil métallique traversé par un courant
3. L'unité de champ magnétique	est le tesla	est le téla	a pour symbole Te
4. Une ligne de champ magnétique	est fermée	est ouverte	est dirigée dans le sens du champ
5. Si on double l'intensité du courant à l'origine d'un champ magnétique	la valeur du champ est divisée par 2	la valeur du champ est multipliée par 2	le champ ne change pas
6. Si on inverse le sens du courant dans un solénoïde	on change les noms des faces	on change le sens du champ magnétique	la face nord reste toujours à la même place
7. Si on double la longueur d'un solénoïde pour doubler son nombre de spires, la valeur du champ magnétique au centre	est doublée	est divisée par deux	ne change pas
8. Les lignes de champ magnétique terrestre	entrent par le pôle Nord magnétique	entrent par le pôle Nord géographique	sortent par le pôle Sud magnétique
9. La valeur du champ magnétique dans un appareil IRM est de l'ordre de	5 μΤ	5 mT	5 T

Exercice 2: Action d'un aimant sur une boussole

Action d'un aimant sur une boussole

Niveau COMPRENDRE

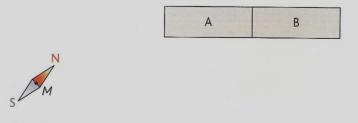
Une petite aiguille aimantée horizontale peut pivoter sans frottement autour d'un axe vertical. Un aimant droit A est disposé dans le plan horizontal de l'aiguille, selon une direction perpendiculaire à celle du nord magnétique. L'aiguille pivote d'un angle $\alpha=70^\circ$.



- 1. Quels sont la direction et le sens du champ magnétique total *B*, en *O* ?
- 2. Représenter graphiquement le champ B_A créé par l'aimant droit en O, la composante horizontale B_H du champ magnétique terrestre et le champ B total.
- 3. a. Trouver la relation entre B_H , B_A et α .
 - b. Calculer B_A sachant que $B_H = 2 \times 10^{-5}$ T.
- 4. a. Trouver la relation entre B_H , B et α .
 - b. Calculer B.

Exercice 5: IRM

- 1. Que signifie IRM?
- 2. Comment est créé le champ magnétique dans un appareil IRM moderne ?
- 3. Quel est le rôle de l'hélium liquide dans lequel baigne la bobine?


Exercice 3 : Champ magnétique créé par deux aimants

Exercice 4: Détermination d'un champ magnétique

Une petite aiguille aimantée est placée au voisinage d'un aimant.

Le champ magnétique terrestre est négligeable devant le champ créé par l'aimant.

- Quel est le pôle nord de l'aimant ?
- 2. Reproduire le schéma et représenter :
- a. le champ magnétique en M;
- b. la ligne de champ passant par M;
- 3. Quelle est l'unité de champ magnétique ? Quel est son symbole ?

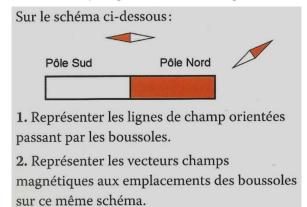
Thème 3 : Santé <u>Exercice 6 :</u> Ordres de grandeur

			rer un champ à la source cor	magnétique ? respondante :
Valeurs	2 T	0,1 T	50 μT	5 T

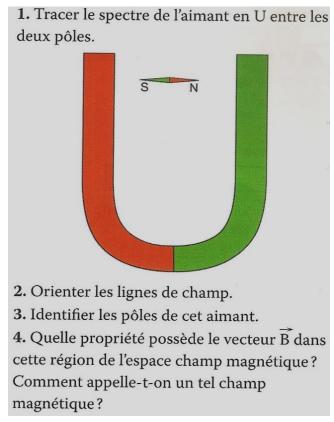
Exercice 7: QCM

1. Deux pôles de même nom s'attirent					
□ Vrai	□ Faux				
2. Le pôle Nord d'une boussole s'oriente vers le pôle Sud d'un aimant					
□ Vrai	□ Faux				
3. Le pôle Nord d'une boussole indique le pôle Nord géographique □ Vrai □ Faux					
4. Le pôle Nord géographique est approximativement un pôle Sud magnétique □ Vrai □ Faux					
5. Les lignes de champ sont conventionnellement orientées du pôle Sud de l'aimant vers le pôle Nord □ Vrai □ Faux					
7. L'intensité du champ magnétique s'exprime en					
□ Ampère	□ Tesla	□Watt			
8. L'intensité du champ magnétique terrestre est d'environ					
□ 50 T	□ 50 mT	□ 50 μT			
9. T représente un champ magnétique					
□ Faible	□Moyen	□ Intense			

Exercice 10 : Solénoïde


On place une sonde permettant de mesurer l'intensité B du champ magnétique à l'intérieur d'un long solénoïde parcouru par un courant d'intensité I.

L'intensité B se calcule grâce à la relation:


$$B = 4 \cdot \pi \cdot 10^{-7} \cdot \frac{N \cdot I}{L}$$

où N est le nombre de spires du solénoïde et L est la longueur du solénoïde exprimée en mètres.

Exercice 8 : Champ magnétique au voisinage d'un aimant

Exercice 9 : Champ magnétique au voisinage d'un aimant en U

1. Le solénoïde de longueur L = 50 cm comporte N = 1000 spires. La sonde indique une valeur B de champ magnétique égale à 7.5×10^{-3} T.

En utilisant la relation précédente, déterminer l'intensité I du courant traversant le solénoïde.

- **2.** Donner l'ordre de grandeur de la valeur du champ magnétique terrestre B_T .
- **3.** Le champ magnétique intérieur du solénoïde a-t-il une valeur inférieure ou supérieure à la valeur du champ magnétique terrestre?