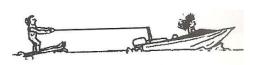
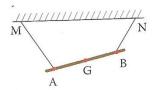
Activité expérimentale: Actions mécanique, Couple de forces, Travail et Energie cinétique

Matériel: Table à mobile autoporteur.

Poulie + dynamomètres + masses marquées (20 g, 50 g, 100 g).

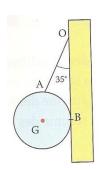

Fils + solide libre de rotation.

Plan incliné


Activité 1 : Actions mécaniques et forces.

 Δ Pour chaque solide cité ci-dessous, réaliser le bilan des forces qui s'appliquent sur l'objet mentionné, c'est-à-dire énumérer toutes les forces qui s'appliquent sur l'objet. (Aide : fiche méthode)

Objet étudié: le skieur


Objet étudié: la barre

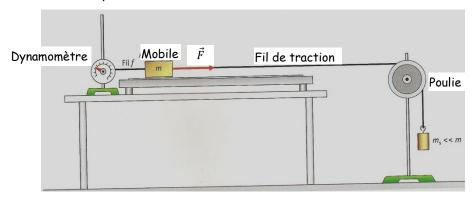
Objet étudié: la boîte

Objet étudié: la balle

Activité 2 : Relation entre force appliquée à un solide et l'accélération produite.

A l'aide du dispositif expérimental suivant :

mesures préliminaires : masse du mobile m = _____

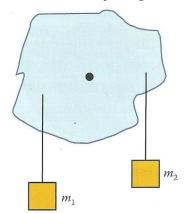

masse du solide ms = _____

- 1. Mesurer grâce au dynamomètre la valeur de la force constante appliquée sur le mobile autoporteur.
- 2. Calculer la valeur de l'accélération a entre deux points quelconques de la trajectoire.
- 3. Mesurer la vitesse du mobile en deux points : A (au début de la trajectoire) et B (vers la fin de la trajectoire).
- 4. Calculer les énergies cinétiques $E_c(A)$ et $E_c(B)$.
- 5. Calculer la variation d'énergie cinétique $\Delta E_c = E_c(B) E_c(A)$.
- 6. Calculer le travail de la force \vec{F} .
- 7. Comparer ΔE_c et W_{AB} .

Rappel $E_c = \frac{1}{2} \times m \times v^2$

Rappel $W_{AB} = F_{\times}AB$

Question: L'accélération a peut-elle être considérée comme constante au cours du mouvement?

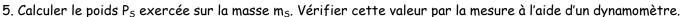

Activité 3 : Equilibre d'un solide autour d'un axe.

Δ Réaliser le montage ci-dessous à l'aide du solide libre de rotation autour d'un axe et de 2 masses m1 et m2.

- 1. Mesurer les masses m_1 et m_2 si elles ne sont pas marquées.
- 2. Déterminer les bras de levier d_1 et d_2 (distances de l'axe de rotation au support de la force)
- 3. Calculer les poids P_1 et P_2 exercés par les masses m_1 et m_2 .
- 4. Déterminer les moments des forces exercées par les masses m1 et m2

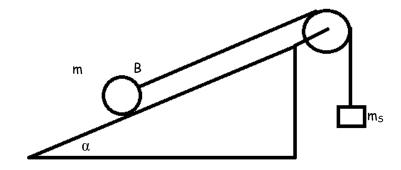
$$\mathcal{M}_{/0}(\vec{F}) = \mathbf{F} \times \mathsf{d}.$$

- 5. Conclure.
- 6. Les poids P_1 et P_2 constituent-ils un couple de forces ? Justifier.



Activité 4 : Equilibre d'un solide sur un plan incliné.

 Δ Réaliser le montage ci-dessous à l'aide du plan incliné, d'un mobile en laiton, d'une poulie et d'une masse marquée de 50 g.


La masse du mobile est m = 107 q et la masse accrochée au fil est m_s = 50 q

- 1. Mesurer l'angle minimum lpha qui permet l'équilibre de l'ensemble.
- 2. Faire le bilan des forces et les représenter sur le schéma.
- 3. Calculer le poids P exercé sur la masse m.
- 4. La poulie admet un moment d'inertie quasi nul. Expliquer pourquoi le poids de la masse m_S qui y est liée est égal à la force appliquée en B.

6. Comparer ce poids et la valeur Pimessin lpha. Conclure en complétant le schéma.

Fiche méthode : Comment faire un bilan des forces ?

Rappel sur la notion de force

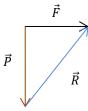
- 1. Une force est une grandeur qui modélise une action mécanique (une interaction entre deux objets). Une force est caractérisée par :
 - Δ Son point d'application
 - •Le centre de gravité G du solide pour les actions à distances
 - ·Le point de contact pour les actions de contact
 - Δ Sa direction (celle du mouvement que la force tend à produire ... verticale, horizontale...)
 - Δ Son sens (celui du mouvement que la force tend à produire ... vers le haut, vers la droite, vers...)
 - Δ Son intensité en newton (symbole N)
- 2. Une force est représentée par un vecteur force \vec{F} dont l'origine est située au point d'application.
- 3. Une force peut:
- mettre en mouvement un objet
- modifier le mouvement d'un objet
- déformer un objet

Comment faire un bilan des forces?

- 1. Chercher quelles sont les forces « à distance » qui agissent sur le solide. Les 3 principales actions à distance sont :
 - Le poids \vec{P} de caractéristiques : Δ Point d'application le centre de gravité G

 Δ Direction verticale

△ Sens vers le bas (le centre de la Terre)


 Δ Intensité P = m×g N

- •La force magnétique (due aux aimants par exemple)
- La force électrique (un objet frotté à proximité par exemple)
- 2. Chercher quelles sont les forces « de contact » qui agissent sur le solide. Chaque point de contact est l'origine d'une force de contact. Une force de contact agit au point de contact.

Equilibre d'un solide

Un solide est en équilibre si la somme vectorielle des forces est nulle.

·Le dynamique des forces est alors fermé :

