TS_2014_2015 C3_Cinétique chimique

CORRECTION DE L'ACTIVITE

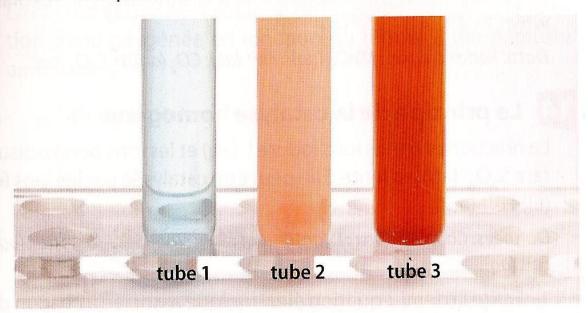
Activité 1 page 234 : Autour de la catalyse

- 1. Un catalyseur est une espèce chimique qui est susceptible d'accélérer une réaction cinétiquement inerte, ou de modifier la durée d'évolution d'un système chimique, mais qui n'est pas elle-même consommée lors de cette réaction. La catalyse permet encore d'orienter l'évolution d'un système vers une réaction, lorsqu'il est susceptible d'être le siège de réactions concurrentes.
- 2. Une enzyme est un biocatalyseur, c'est-à-dire un catalyseur d'origine biologique.
- 3. Lors d'une synthèse industrielle ou au laboratoire, la catalyse permet généralement d'accélérer les processus et d'améliorer la sélectivité des réactions.
- **4**. La synthèse de l'ammoniac, tout comme le traitement et la valorisation des pétroles, utilisent la catalyse hétérogène.
- 5. La catalyse homogène peut être définie comme un processus dans lequel le catalyseur et le milieu réactionnel sont dans le même état physique.
- **6**. Dans ce cas, le catalyseur utilisé « modifie les données du jeu et donc oriente vers un résultat plutôt qu'un autre » : c'est donc la sélectivité du catalyseur qui est mise en évidence.

7.

Procédés ou synthèses	Type de catalyse	Catalyseur		
Craquage	Hétérogène	Zéolithes		
Reformage	Hétérogène	Pt-Al ₂ O ₃		
Synthèse de l'ammoniac	Hétérogène	Fer associé à de faibles quantités d'oxydes métalliques ou ruthénium sur support de graphite		
Dimérisation des oléfines	Homogène	Selon la sélectivité souhaitée : trialkyl aluminium ou complexe du nickel		
Synthèse du styrène	Hétérogène	Fe ₂ O ₃		

8. On peut légitimement penser que l'industrie chimique poursuit deux objectifs : produire au moindre cout tout en préservant la sante des opérateurs et des utilisateurs ainsi que l'environnement. En cela, \ll la catalyse nous permet de trouver des solutions pour élaborer plus efficacement les molécules que nous utilisons, en économisant les matières premières, l'énergie et réduisant de fait notre impact sur l'environnement \gg . Ainsi, la chimie verte, concept développe dans la Partie 5, séquence 2, emprunte beaucoup à la catalyse.


Exercice 7 page 243:

7 Autour du butanal

On ajoute du butanal C_3H_7 CHO à de la liqueur de Fehling, bleue du fait des ions cuivre qu'elle contient. On répartit le milieu réactionnel dans trois tubes à essais : le tube 1 est laissé à température ambiante, le tube 2 est placé dans un bain à 40 °C, le tube 3 est chauffé à ébullition.

Données. Couples redox : Cu^{2+} (aq) (bleu)/ Cu_2O (s) (rouge) et $C_3H_7CO_2^-$ (aq)/ C_3H_7CHO (aq).

- 1. Écrire l'équation de la réaction d'oxydation en milieu basique du butanal par la liqueur de Fehling.
- 2. Quel paramètre physique permet de suivre l'évolution temporelle du système ?
- **3.** À la date t = 2 min, on peut observer les résultats ci-dessous. Pourquoi est-il nécessaire de chauffer le milieu ?

4. Le butanal est une espèce présente dans le beurre qui peut s'oxyder au contact de l'air. Pour quelle raison sa conservation est-elle meilleure au réfrigérateur ?

Exercice 5 page 342

Cinétique de la réduction de l'eau oxygénée

À la date t=0, on introduit dans un erlenmeyer des volumes $V_1=5.0~\mathrm{mL}$ d'une solution d'iodure de potassium (K⁺ (aq) + I⁻ (aq)), de concentration $c_1=5.0\times 10^{-3}~\mathrm{mol}\cdot \mathrm{L}^{-1}$, et $V_2=5.0~\mathrm{mL}$ d'eau oxygénée $\mathrm{H_2O_2}$ (aq), de concentration $c_2=2.5\times 10^{-2}~\mathrm{mol}\cdot \mathrm{L}^{-1}$, préalablement acidifiée par de l'acide sulfurique.

Données. Couples redox : $I_2(aq)/I^-(aq)$ et $H_2O_2(aq)/H_2O(I)$. Seul le diiode est coloré (brun).

- 1. Écrire l'équation de la réaction d'oxydoréduction qui se produit.
- 2. Cette réaction est lente. Quel paramètre physique du milieu permet d'en suivre l'évolution temporelle ?
- 3. Déterminer l'avancement maximal ainsi que la nature du réactif limitant.
- **4.** Un suivi spectrophotométrique permet de déterminer la concentration en diiode *c* du milieu à des intervalles de temps réguliers :

t (min)	2	4	6	8	10	12	14
c (mmol · L ⁻¹)	0,26	0,51	0,81	0,98	1,15	1,22	1,25

Tracer la courbe c = f(t).

- 5. L'état final du système chimique est-il atteint à la date t = 14 min?
- 6. Déterminer le temps de demi-réaction.